
4. G.I. Abramo~ and K. A. Ivanov, Inzh.-fiz. Zh., 60, No. 3, 379-385 (1991). 
5. P. I. Geshev, inzh.-fiz. Zh., 35, No. 2, 292-296 (1978). 
6. A. F. Polyakov, Teplofiz. Vys. Temp., 12, No. 2, 328-336 (1974). 
7. B. S. Petukhov, A. F. Polyakov, Yu. L. Shekhter, and Yu. V. Tsypulev, Turbulent 

Boundary-Layer Flow [in Russian], Novosibirsk (1975), Part 2, pp. 162-177. 
8. D. A. Labuntsov and Yu. B. Zudin, Periodic Heat-Transfer Processes [in Russian], Mos- 

cow (1984). 
9. R. Cheesewright and K. S. Doan, Int. J. Heat Mass Transfer, 21, No. 7, 911-921 (1978). 

i0. V. P. Ivakin, A. G. Kirdyashkin, and L. I. Chernyavskii, Turbulent Boundary-Layer Flow 
[in Russian], Novosibirsk (1975); Part 2, pp. 256-269. 

ii. S. Klein, W. Reynolds, F. Shroub, et al., Mekhanika, No. 4, 42-78 (1969). 
12. E. Corino and R. Brodky, Mekhanika, No. i, 56-82 (1971). 
13. L. C. Thomas, Int. J. Heat Mass Transfer, 25, No. 8, 1127-1136 (1982). 
14. K. Kutamura, M. Koike, I. Fukuoka, and T. Saito, Int. J. Heat Mass Transfer, 28, No. 4, 

837-850 (1985). 
15. E. M. Khabakhpasheva, Problems of Heat Physics and Hydrodynamics [in Russian], Novosi- 

birsk (1974), pp. 223-235. 
16. S. S. Kutateladze, B. P. Mironov, V. E. Nakoryakov, and E. M. Khabakhpasheva, Experi- 

mental Studies of Turbulent Boundary-Layer Flow [in Russian], Novosibirsk (1975). 
17. S. S. Kutateladze, A. G. Kirdyashkin, and V. P. Ivakin, Dokl. Akad. Nauk SSSR, 214, No. 

6, 1270-1273 (1974). 
18. So S. Kutateladze, E. M. Khabakhpasheva, and B. V. Perepelitsa, Heat Transfer, 1978. 

Soviet Research [in Russian], Moscow (1980), pp. 5-13. 
19. R. Cheesewright and E. Ierokipiotis, Proc. 7th Int. Heat Trans. Conf., Vol. 2 (1982), 

pp. 305-309. 
20. I. G. Kozhevnikov and L. A. Novitskii, Thermal and Physical Properties of Materials at 

Low Temperatures [in Russianl, Moscow (1982). 
21. N. B. Vargaftik, Thermal and Physical Properties of Gases and Liquids [in Russian], 

Moscow (1972). 
22. P. L. Kirillov, Inzh.-fiz. Zh., 50, No. 3, 501-512 (1986). 

DISSOCIATION OF GASEOUS HYDRATES IN BEDS 

G. G. Tsypkin UDC 532.546:536.421 

A mathematical model which accounts for the mobility of the liquid phase is 
constructed to describe the dissociation of gaseous hydrates in beds. 

!. The extraction of gaseous hydrates from beds presumes that these compounds break 
down in the beds. The dissociation process, accompanied by the evolution of substantial 
volumes of gas and absorbed heat, is controlled to a considerable extent by the initial 
state of the bed system. Three different mathematical models corresponding to different 
states have been constructed to describe the breakdown of a gaseous hydrate in a porous 
medium. The model in [i] is based on the proposition that the pores in the bed are com- 
pletelN saturated with gaseous hydrate. The authors of [2] examined the case when the gas 
in the porous medium is in the two-phase state at the initial moment of time. In [3], it 
was assumed that the bed initially contains the gaseous hydrate, gas, and water in a state 
of thermodynamic equilibrium. These models make it possible to obtain quantitative esti- 
mates of processes occurring in beds when gas is being extracted from a gas-hydrate deposit 
by the pressure-reduction method in combination with heating of the well region. 

The above three models are all based on the assumption that the effect of water on the 
given physical process (dissociation of hydrates) is small enough to be ignored. In those 
cases in which the level of hydrate saturation is high and, thus, a proportionately large 
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volume of water is obtained as a result of the dissociation, the validity of this assump- 
tion must be questioned. Moreover, excluding the liquid phase from consideration makes it 
impossible to study one problem of great practical interest - the problem of the effect of 
catalysts on a hydrate-containing bed, with the liquid phase being responsible for their 
transport [4]. 

Another class of problems in which it is necessary to consider the mobility of both 
components is the problem of the formation and dissociation of gaseous hydrates in oceanic 
deposits [5]. It is noted that the given process usually takes place with a deficit of gas, 
which leads to a reduction of degree of occupation of the pore space. Also, phase trans- 
formations lead to a change in the salt regime of interstitial water, which to a large ex- 
tent determines the mobility of water in marine deposits. 

Mathematical formulations of problems involving unknown moving boundaries are quite 
complicated, so it is natural to first examine a generalization for the simplest situation 
which arises in the dissociation of a gaseous hydrate completely filling a pore space. 

In the present investigation, we establish the conditions at the dissociation front 
with allowance for the presence of the liquid phase and its mobility. We use a unidimen- 
sional formulation to obtain a similarity solution that allows us to analyze the effect of 
the parameters of the system on the dissociation of a hydrate in porous medium. 

~. By a hydrate-bearing bed, we will mean a porous medium completely saturated with a 
hydrate of a gas. Let the conditions for pressure and temperature at a certain stationary 
boundary be such that the gas and water are in the free state. Then we will have a dissoci- 
ation boundary with hydrate on one side and gas and water in the free state on the other 
side. For simplicity, we will assume [1-3] that the skeleton of the porous medium and the 
gaseous hydrate are incompressible and stationary, that the water is an incompressible 
fluid, that the gas satisfies the Clapeyron equation, and that capillary effects are small. 
Then the below heat-conduction equation is valid in the region of the hydrate 

Here 

OT (i) 
-- aoAT. 

at 

ao = - mZgh.- +- (1 - -  m) ~c 
m%hCgh+ (1 - -  m) poC~ 

In the region containing gas and water, we have system of equations representing the mass 
conservation laws for the gas and water, the generalized DarcySs laws, the law of energy 
conservation, and the equation of state: 

O m (1 - -  s )  ~g + div ~vg = O, 
at 

0 
m S + d i v v  w = 0, 

at 
v g = - -  k ~ ( S )  g r adP ,  vw- -  kfw(S--) g r a d P ,  ( 2 )  

0 ~ g ~,w 
at (Pe)ef + div (pg~Vg + p~ h w Vw} = div (~efgrad T), 

P = pgR T 
H e r e  (Pe)e f = mS@wew+ m(1 - -  S) ~eg  @ (1 - -  m) PeCc, ~ e f  = mS~t,w ~- m(l - -  S ) Z g +  (1 - -  m) ~e- 

I n  o r d e r  t o  f o r m u l a t e  t h e  p r o b l e m  o f  t h e  d i s s o c i a t i o n  o f  g a s e o u s  h y d r a t e s ,  i t  i s  n e c e s -  
s a r y  t o  a s s i g n  b o u n d a r y  c o n d i t i o n s  f o r  t h e  m o v i n g  p h a s e  b o u n d a r y .  We w i l l  do t h i s  on t h e  
b a s i s  o f  b a l a n c e  e q u a t i o n s .  F o r  t h e  s a k e  o f  s p e c i f i c i t y ,  we w i l l  e x a m i n e  a h y d r a t e  o f  
methane with the occupation factor n = 6 (the number of water molecules per molecule of 
gas) [6]. To derive the mass-balance relations, it is sufficient to represent the gaseous 
hydrate as a homogeneous mixture of gas and water. This means that we can introduce effec- 
tive densities for the gas and water in the hydrate-saturated region, calculating them as 
the masses of the corresponding components referred to the entire volume occupied by the 
gaseous hydrate. Then using the known molecular weights of methane and water, we find that 
1 m 3 of hydrate with a weight of 900 kg and a value n = 6 contains 783.87 kg water and 
116.13 kg gas. Thus, we can set the effective densities of water and gas in the hydrate- 
containing region equal to Pw0 = 783.87 kg/m a and Pg0 = 116.13 kg/m 3, respectively.. 
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Using universal discontinuity equations [7], we obtain the balance relations for the 

energy and the masses of the water and gas. In the present case, these relations take the 
form: 

%_ (grad Y)~_ -- ~+ (grad Y)~+ -- pg_h m ( v ~ _  -- P w_h~ (Vw)n- : 

= mVT~ {~h.//gh-- ~_hg_ (1 - -  S _ ) -  Pw_hw_S_}, (3 )  

Pw- (vw)~- = mV~ (pw_S_ - -  Pw,o), 

pg_ (Vg)~_ = m Y  n {LOg_ (1 -- S_) -- %0}. 

We augment t h e  s y s t e m  o f  c o n s e r v a t i o n  laws a t  t h e  d i s s o c i a t i o n  f r o n t  w i t h  t h e  c o n d i t i o n  of  
e q u i l i b r i u m  phase  t r a n s f o r m a t i o n  [ 1 - 4 ] :  

T.  = A l n P , + B .  (4)  

Here ,  A = 10 K, B = 128 K. E q u a t i o n s  (3)  and (4)  c o n s t i t u t e  t h e  c o m p l e t e  s y s t e m  o f  c o n d i -  
t i o n s  f o r  t h e  moving b o u n d a r y .  

Sys tems  (2)  and bounda ry  c o n d i t i o n s  ( 3 - 4 )  can be t r a n s f o r m e d  by u s i n g  thermodynamic  
r e l a t i o n s  and i d e n t i t y  s u b s t i t u t i o n s  r e l a t i v e  t o  t h e  t e m p e r a t u r e  T, p r e s s u r e  P, and w a t e r  
s a t u r a t i o n  S. We t h u s  o b t a i n  t h e  f o l l o w i n g  s y s t e m  o f  b a s i c  e q u a t i o n s  in  t h e  g a s - w a t e r  r e -  
g ion :  

OS m - -  -- div(~ gradP), 
Ot ~:w 

P grad T grad P, ( 1 -  S) OPot p OS_~ot - - ( 1 -  S) T P OTat -- mlZgk div (fgP grad P) + ;~t~" ' T  

( Pw~ + grad P grad T = div (;~ef grad T). \ �9 ~w R T ~t g 

(5) 

Here (Pe)e f : nzSPw % -@ tTz (1 S) pg Cp + (1 - -  m) pr 

The c o n d i t i o n s  on t h e  p h a s e  bounda ry  t a k e  t h e  form:  

k [w(S_)(gradP),~_ m( P~o S_iV~, 
p~ Pw / 

( \ 
fg(S_)(grad P)~_ ::  R T , - -  1 -4- s_ )  vT~, (6 )  

\ P ,  

mqp~,hV,~ = )~+ (grad T)~+ - -  )~_ (grad T)~_, 

T , = A l n P , + B .  

3. Let us examine a hydrate-saturated bed with the temperature T. Let the bed have a 
certain fixed boundary. We assign values of pressure p0 and temperature T o on this bound- 

ary which, on phase diagram, lie within the region in which the gas exists in the free state. 
We will examine the problem in a linear approximation, when the changes in the sought func- 
tions are small compared to their absolute values. We represent the sought functions in 
the gas-water region in the form of unperturbed values and perturbations: 

T=TO+T ', P=Po+U, S=S~ ~, 

Then system (5) will have the following form in the linear approximation: 

OS' _ XwAP, ' 
Ot 

op___2 _, + aT' _  AP', 
Ot Ot 

OP' aT' + ~ --- eAT'. 
Ot Ot 

(7) 
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Here 

of  m ( 1 - -  S ~ 
a-- - -  , 0 3 - -  

(oC) ef ( p C )  ~f 

~: . . . .  , (~== ~ w = _ . ~  m ( 1 - - S  ~ p~ pg ,, T O ' m~w 

We define the unperturbed value of water saturation S o around which the linearization is 
performed as the zeroth approximation for S,. To do this, in Eqs. (6) we replace the sought 
values at the front by the values of the unperturbed quantities. Excluding mass from the 
conservation laws (grad P)n- and assuming for simplicity in the linear approximation that 
fw(S ~ = S o , fg(S ~ = 1 - S o , we finally obtain: 

s o = Q - -  y O r - ~ _  p ~ / ~ ,  

' '  ~_P-2~- -Rro+( l+  ] 

It should be noted that the given expression for S O was obtained from the solution of a 
quadratic equation. The second root is discarded as physically meaningless, since it is 
always greater than unity. If the functions of relative phase permeabilities have a differ- 
ent form, then the problem can be reduced to the solution of a transcendental equation. 

In the hydrate region separated by a moving boundary from the gas-water region, linear 
heat-conduction equation (i) is valid. Following [I-3], we will examine a unidimensional 
semi-infinite problem. Let To, T o and p0 be constants. Then the formulated problem has a 
similarity solution of the form 

T'=T ' (~) ,  P ' = P ' ( ~ ) ,  X ( t ) = ~ l / t T ~ : x / y t 7  (8)  

The solution in both regions can be expressed through probability integrals. In the gas- 
water region (0 < ~ < ~) we have: 

T (~) -- co [biE, (~)-- b2E~ (~)1 -}- T ~ 

1 
P (~) -- - -  [(1 - -  %) O~E~ (~) - -  (1 - -  ~ )  b2E2 (~)] @ po, 

( p - p ,  r-r  l e s  s (~) = s .; 
\ po T O / 

Here 

1 (  @ )  ~ / / " @  ( a , 2 a 
% 2 = -  i -  1+ _~ 1---~7 J + - - & 0 ;  

�9 

b~ - 1 - -  ~ ( T ,  - -  TO) + p ,  _ po; e ~  (~) - -  
f.o 

b2 1 - - %  ( T , - - T  O ) q - P , - - P o ;  E2(.~)== 
f.o 

(1 - .  so) f .  ( s  o) ~ 

~gfw (s~ + ~wf,g(s ~ 

' -  

erf / / .  % - I 
a ./ 

/ ~ " - 0 % - '  
(9) 

In the hydrate-containing region ($ < ~ < ~) the temperature distribution is determined by 
the expression 

V - - : ~ V , - - V o )  2 v ~  +Vo .  (~o)  

e r f c ( 2 v ~  

Exac t  s o l u t i o n  (9 -10 )  c o n t a i n s  t h e  unknowns P , ,  T , ,  S_, B. D i f f e r e n t i a t i n g  t h e  p r e s -  
s u r e  and t e m p e r a t u r e  d i s t r i b u t i o n s  t h a t  have  been found ,  we f i n d  t h e  h e a t  and mass f lows  to  
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Fig. i. Dependence of temperature and pressure on the di- 
mensionless similarity variable (To = 278 K, T o = 333 K, 
p0 = 2.5MHz); a) k = 10 -15 m2; b) k = 10 -17 m 2, P, MHz; 

T, K 

the right and left of the moving boundary. Inserting these expressions into (6) and consid- 
ering that V n ~ X(t) = ~/2~, we obtain a system of equations to determine the sought quan- 
tities P,, T,, S_, 6. This system was solved numerically. 

4. The calculations were carrried out for the following values of the parameters: 
m = 25; R = 520 J/(kg.K), pw=103 kg/m3, P~ h= 9"102 kg/m3, Pc = 2"10s kg/m3, ~g = 1.8"10-5 
Pa.sec, Pw = 1"8"i0-3 Pa.sec, %c = 2 Wi(mYK), %w = 0.58 WI(m.K), ~= = 3.4.10 -2 Wl(m.K), 
l=h = 2.11 W/(m.K), C w = 4.2"103 J/(kg.K), C c = 103 J/(kg.K), Cg h ~ 2.5-103 J/(kg.K), Cp = 
2~I03 J/(kg.K), q = 5.105 J/kg. 

The characteristic regimes of dissociation of the gaseous hydrates are shown in Fig. i. 
The results of the numerical experiments show that an increase in temperature T o or a de- 
crease in pressure p0 on the stationary wall leads to an increase in the velocity of the 
dissociation boundary. The exact hydrate dissociation regime also depends on permeability. 
Thus, with a relatively high permeability k = 10 -15 m E (see Fig. la), the value of P, at the 
dissociation front is close to p0. At small k = 10 -17 m 2, the flow of gas from the front is 
impeded. This leads to a decrease in the velocity of the dissociation front and a substan- 
tial increase in pressure at the boundary (see Fig. ib). 

There are also differences in the temperature distributions. For example, in the first 
case the minimum temperature is seen on the dissociation surface. This minimum is a conse- 
quence of the pressure drop, which intensifies dissociation of the hydrate. In this case, 
heat for the phase transformation is also removed from the region ahead of the front. At 
low permeabilities (see Fig. ib) the temperature distribution is nonmonotonic, since an in- 
crease in pressure at the boundary leads to an increase in dissociation temperature. In the 
given case, this temperature turns out to be lower than the initial temperature. 

It should be noted that the pressure distribution in the gas-water region is almost a 
physically linear function. This shows that the solution of the problem can be simplified 
in the given region. However, such a simplification does not always introduce any signifi- 
cant changes in the procedure that must be used to solve the system of transcendental equa- 
tions. 

As was noted in the introduction, the presence of the liquid phase was not taken into 
account in previous studies. If the degree of hydration is low [2] and, thus, so is the 
degree of saturation with water, then its presence can be ignored when the motion of the 
gas is calculated. If hydrate saturation is initially equal to unity, then it can be as- 
sumed that the water is stationary [i] (in the sense that all of the water from dissocia- 
tion of the hydrate remains in place), and the phase permeability of the gas can easily be 
determined on the basis of molecular considerations. In this case, water saturation in the 
gas-water region is unambiguously determined by the effective density of the water in the 
hydrate region. Assuming that the water is incompressible and stationary, its saturation 
for the given case S o = 0.783. Calculations performed withallowance for mobility show 
that S_ = 0.65 for the solution shown in Fig. laand S_ = 0.7 for Fig. ib, i.e., a decrease 
in permeability leads to a decrease in the amount of water removed from the dissociation 
region. In this case, the latter quantity approaches S 0. An increase in permeability in- 
creases water flow from the gas-water region, and there may be a twofold difference in the 
gas permeabilities determined by different methods. Thus, to evaluate gas flows in the case 
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of high permeabilities, it is necessary to consider the mobility of the liquid phase. 

It should also be noted that, as follows from the solution (9), water saturation in the 
region changes only slightly. This is a consequence of the chosen approximation (ignoring 
capillary pressure), in which the entire change in saturation is in essence referred to the 
boundary. 

If we examine a problem corresponding to the recovery of gas from a gas-hydrate deposit 
by the pressure-reduction method and assume that the temperature at the outlet T o is equal 
to the initial temperature To, then in this case water saturation S_ depends only slightly 
on permeability k and differs appreciably from S o . Thus, in this case, it is necessary to 
allow for the mobility of water in estimates of the amount of gas that can be recovered from 
the bed. Thus, with k = i0 -14 m 2 = = , we obtain S_ = 0.656, ~ = 0.179, P, 2.5004 MPa, T, 
275.3 K, while at k = i0 -17 m 2 S_ = 0.66, ~ = 0.142, P, = 2.74 MPa, T, = 276.24 K. 

We should point out the fourfold decrease in the velocity of the dissociation front 
compared to the regimes shown in Fig. la. 

The above examples correspond to a high value of the occupation factor (n = 6), the 
exact value of this quantity depending on the conditions of hydrate formation and possibly 
being lower than six due to incomplete occupation. The results of our calculations show 
that an increase in the degree of occupation (a decrease in the number of gas molecules in 
the structure of the gaseous hydrate) leads to a decrease in pressure and temperature at the 
dissociation front with an increase in water saturation in the gas-water region and the 
velocity of the boundary. Thus, at n = 12, calculations performed for the case correspond- 
ing to that shown in Fig. ib yield the following values for the sought quantities: S_ = 0.73, 

= 0.6, P, = 4.31MPa, T, = 280.77 K. 

NOTATION 

T, temperature; a, diffusivity; m, porosity; ~, thermal conductivity; p, density; C, 
heat capacity; S, water saturation; v, filtration velocity; k, permeability; f, relative 
phase permeability; P, pressure; D, viscosity; e, internal energy density; h, enthalpy; R, 
gas constant; V, X(t), velocity and law of motion of the dissociation surface; g, similar- 
ity variable; ~, self-similar velocity; { = ~/2~. Indices: gh, gaseous hydrate; g, gas; 
w, water; n, normal; +, -, values to the right and left of the boundary; *, value on the 
boundary. 
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